Part Number Hot Search : 
GLZJ18 SD1060YS P3601MSH C3000 0CEETBA1 6143A LA7685J SKN1S
Product Description
Full Text Search
 

To Download AMMC-6233 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 AMMC-6233 18 to 32 GHz GaAs Low Noise Amplifier
Data Sheet
Chip Size: 1900 x 800 m (74.8 x 31.5 mils) Chip Size Tolerance: 10 m ( 0.4 mils) Chip Thickness: 100 10 m (4 0.4 mils) RF Pad Dimensions: 110 x 90 m (4.33 x 3.54 mils) DC Pad Dimensions: 100 x 100 m (3.94 x 3.94 mils)
Description
Avago Technologies' AMMC-6233 is a high gain, lownoise amplifier that operates from 18 GHz to 32 GHz. This LNA provides a wide-band solution for system design since it covers several bands, thus, reduces part inventory. The device has input / output match to 50 Ohm, is unconditionally stable and can be used as either primary or sub-sequential low noise gain stage. By eliminating the complex tuning and assembly processes typically required by hybrid (discrete- FET) amplifiers, the AMMC-6233 is a cost-effective alternative in the 18 - 32 GHz communications receivers. The backside of the chip is both RF and DC ground. This helps simplify the assembly process and reduces assembly related performance variations and costs. It is fabricated in a PHEMT process to provide exceptional noise and gain performance. For improved reliability and moisture protection, the die is passivated at the active areas.
Features
* * * * Integrated DC block and choke 50 input and output match Single positive supply No negative gate bias
Specifications (Vd = 3.0 V, Idd = 65 mA)
* * * * * RF frequencies: 18 - 32 GHz Small-signal gain: 22 dB Low gain flatness: 1 dB Typical noise figure: 3.0 dB Typical output IP3: 19 dBm
Applications
* * * * Microwave radio systems Satellite VSAT, DBS up/down link LMDS & Pt-Pt mmW long haul Broadband wireless access (including 802.16 and 802.20 WiMax) * WLL and MMDS loops * Commercial grade military
Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model (Class A) ESD Human Body Model (Class 1A) Refer to Avago Technologies Application Note A004R: Electrostatic Discharge, Damage and Control. Note: 1. This MMIC uses depletion mode pHEMT devices.
Absolute Maximum Ratings[1]
Symbol Vd Id Pin Tch Tstg Tmax Parameters/Condition Drain to Ground Voltage Drain Current RF CW Input Power Max Max Channel Temperature Storage Temperature Maximum Assembly Temperature Unit V mA dBm C C C Max 5.5 100 10 +150 -65 +150 260 for 20s
Note: 1. Operation in excess of any of these conditions may result in permanent damage to this device. The absolute maximum ratings for Vd, Id, and Pin were determined at an ambient temperature of 25C unless noted otherwise.
DC Specifications/ Physical Properties[2]
Symbol Idd Vdd qjc Parameter and Test Condition Drain Current Under Any RF Power Drive and Temp.] (Vdd = 3 V) Drain Supply Voltage Thermal Resistance[3] Unit mA V C/W Min. Typ. 65 3 27 Max. 90 5
Notes: 2. Ambient operational temperature TA = 25C unless noted 3. Channel-to-backside Thermal Resistance (Tchannel = 34C) as measured using infrared microscopy. Thermal Resistance at backside temp. (Tb) = 25C calculated from measured data.
AMMC-6233 RF Specifications[4]
Symbol Gain NF RLin RLout Iso P-1dB OIP3
TA = 25C, Vdd = 3.0 V, Idd = 65 mA, Zo = 50 Parameters and Test Conditions RF Small Signal Gain Noise Figure into 50W(5) Input Return Loss Output Return Loss Isolation Output Power at 1dB(7) Gain Compression Output Third Order Intercept Point Frequencies (GHz) 18, 26, 31 18, 26, 31 Units dB dB dB dB dB dBm dBm Minimum 18 Typical 22 3.0 -12 -12 -45 8 19 4.0 Maximum
Notes: 4. All tested parameters guaranteed with measurement accuracy +/-0.5 dB for the 6 to 20 GHz range, 0.75 dB for the 20 to 33 GHz range and 1.0 dB for the 33 to 50 GHz range. 5. NF is measured on-wafer. Additional bond wires (~0.2 nH) at input could improve NF at some frequencies.
2
AMMC-6233 Typical Performances (TA = 25C, Vdd = 3.0 V, Itotal = 65 mA, Zin = Zout = 50 unless otherwise stated)
25 20 15 10 5 0 5
4 NF (dB) 14 18 22 26 30 34
S21 (dB)
3
2
1 18
20
22
24
26
28
30
32
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 1. Typical gain
Figure 2. Typical noise figure
0
25 20
-10 S11 (dB)
OIP3, OP1dB (dBm)
15 10 5
-20
-30
14
18
22
26
30
34
0 18
20
22
24
26
28
30
32
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 3. Typical input return loss
Figure 4. Typical output P-1dB
3
AMMC-6233 Typical Performances (Cont'd.) (TA = 25C, Vdd = 3.0 V, Itotal = 65 mA, Zin = Zout = 50 unless otherwise stated)
0 70
65 TOTAL Idd (mA) -10 S22 (dB)
60 -40C 55 25C +85C
-20
-30
14
18
22
26
30
34
50 3.0
3.5
4.0 Vdd (V)
4.5
5.0
FREQUENCY (GHz)
Figure 5. Typical output return loss
Figure 6. Total Idd over temp vs. Vdd
0
25 20 OIP3 (dBm) 15 10 3V 5 0 18 4V 5V
-20 S12 (dB)
-40
-60
-80
14
18
22
26
30
34
20
22
24
26
28
30
32
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 7. Typical isolation
Figure 8. Typical output IP3 over Vdd
4
AMMC-6233 Typical Performances (Cont'd.) (TA = 25C, Vdd = 3.0 V, Itotal = 65 mA, Zin = Zout = 50 unless otherwise stated)
25 20 20 S21 (dB) S21 (dB) Vdd = 3 V 5 0 Vdd = 4 V Vdd = 5 V 14 18 22 26 30 34 0 14 18 22 26 10 15 10 30
-40C 25C +85C 30 34
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 9. Typical gain over Vdd
Figure 10. Typical gain over temp
-5 -10
0
-10 S11 (dB) S11 (dB) Vdd = 3 V -25 -30 Vdd = 4 V Vdd = 5 V 14 18 22 26 30 34 -30 14 -20 -40C 25C +85C 18 22 26 30 34 FREQUENCY (GHz) -15 -20
FREQUENCY (GHz)
Figure 11. Typical input return loss over Vdd
Figure 12. Typical input return loss over temp
5
AMMC-6233 Typical Performances (Cont'd.) (TA = 25C, Vdd = 3.0 V, Itotal = 65 mA, Zin = Zout = 50 unless otherwise stated)
0 Vdd = 3 V Vdd = 4 V Vdd = 5 V -10 S22 (dB) S22 (dB) -5 -10 -15 -20 -30 -25 0 -40C 25C +85C
-20
14
18
22
26
30
34
14
18
22
26
30
34
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 13. Typical output return loss over Vdd.
Figure 14. Typical output return loss over temp
5 4 3 2 -40C 1 0 18 25C +85C 20 22 24 26 28 30 32
5
4 NF (dB)
NF (dB)
3 3V 2 4V 5V 1 18 20 22 24 26 28 30 32
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 15. Typical noise figure over temp
Figure 16. Typical noise figure over Vdd
6
AMMC-6233 Typical Scattering Parameters[1] (Tc =25C, VDD = 3 V, Itotal = 65 mA, Zin = Zout = 50 )
Freq GHz 11.0 12.0 13.0 14.0 15.0 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 dB -2.349 -2.831 -3.639 -5.257 -6.821 -7.539 -7.710 -7.877 -8.056 -8.257 -8.550 -8.930 -9.468 -10.225 -11.199 -12.517 -13.985 -15.874 -18.042 -20.351 -22.137 -23.285 -22.352 -21.654 -20.587 -19.773 -19.259 -18.703 -18.131 -17.558 -17.404 -16.833 -16.271 -15.911 -14.929 -13.954 -11.832 -9.663 -7.410 -5.356 -3.519 -2.278 -1.616 -1.284 -1.152 -1.103 -1.070 -1.005 -0.993 -0.979 S11 Mag 0.763049 0.721884 0.657746 0.545917 0.456007 0.419825 0.411613 0.403773 0.395568 0.38648 0.373666 0.357671 0.336199 0.308143 0.275453 0.236673 0.199868 0.160798 0.125292 0.096035 0.078186 0.068506 0.076278 0.082658 0.09346 0.102644 0.108911 0.11611 0.124012 0.132469 0.134829 0.143999 0.153616 0.160113 0.179283 0.200581 0.2561 0.328738 0.426065 0.539757 0.666862 0.769282 0.830255 0.862564 0.875805 0.880774 0.88412 0.890776 0.891989 0.893391 Phase 94.09268 60.39973 22.62143 -15.0803 -45.926 -73.1573 -86.6582 -100.097 -113.442 -126.65 -139.685 -152.21 -164.843 -177.034 171.1243 160.4605 151.4995 144.5777 141.0916 144.2364 152.7016 167.6592 179.2708 -175.165 -171.845 -173.525 -173.001 -173.338 -173.508 -174.581 -175.139 -173.619 -174.645 -173.134 -172.407 -173.323 -174.736 179.3253 170.2477 157.4976 142.1866 125.7972 108.3899 92.95263 79.81563 67.52757 56.2657 46.2681 36.48963 27.17473 dB -1.489 6.597 12.838 16.445 17.826 18.620 19.031 19.461 19.904 20.378 20.826 21.278 21.692 22.032 22.316 22.520 22.655 22.746 22.780 22.812 22.818 22.786 22.841 22.830 22.842 22.820 22.782 22.734 22.719 22.708 22.630 22.560 22.463 22.300 22.113 21.922 21.483 20.986 20.404 19.675 18.300 15.919 12.714 8.852 4.733 0.380 -4.296 -9.511 -15.870 -23.877 S21 Mag 0.842446 2.137292 4.384324 6.641446 7.785794 8.531229 8.944062 9.397838 9.890278 10.44466 10.99711 11.58536 12.15078 12.63514 13.05575 13.36524 13.57596 13.71832 13.77231 13.8222 13.83284 13.78216 13.86875 13.85124 13.87022 13.83515 13.77483 13.69857 13.6757 13.65816 13.5361 13.42741 13.27896 13.03121 12.75443 12.47648 11.86206 11.2019 10.47666 9.632708 8.222064 6.250824 4.322148 2.770862 1.724376 1.044766 0.609794 0.334545 0.160872 0.063995 Phase -21.3333 -102.78 178.5468 99.76884 31.45928 -25.575 -51.443 -76.2203 -100.232 -123.672 -146.836 -169.714 167.3367 144.6769 122.1392 100.0025 78.2942 56.85629 36.2191 15.9253 -3.81822 -23.2519 -42.6854 -61.923 -80.8688 -99.8029 -118.619 -137.271 -155.791 -174.496 166.5557 147.7949 128.8982 109.84 91.30458 72.76954 35.36896 -2.39273 -41.0669 -82.6699 -126.39 -170.91 147.8419 111.5034 79.74362 51.4617 26.8078 6.071765 -7.61507 3.187742 dB -70.874 -78.885 -67.000 -73.434 -66.470 -58.581 -65.814 -64.611 -66.021 -62.064 -64.114 -58.746 -57.575 -54.947 -55.050 -54.209 -56.478 -52.655 -53.353 -52.574 -53.815 -52.498 -53.705 -52.363 -51.790 -51.138 -50.854 -51.453 -53.056 -52.152 -51.597 -51.989 -52.041 -49.936 -50.458 -51.970 -51.657 -51.701 -51.720 -54.688 -54.425 -62.812 -52.522 -59.931 -55.859 -55.953 -58.313 -54.001 -55.336 -55.849 S12 Mag 0.000286 0.000114 0.000447 0.000213 0.000475 0.001178 0.000512 0.000588 0.0005 0.000788 0.000623 0.001155 0.001322 0.001789 0.001768 0.001948 0.0015 0.002329 0.002149 0.002351 0.002038 0.002372 0.002064 0.002409 0.002573 0.002774 0.002866 0.002675 0.002224 0.002468 0.002631 0.002515 0.0025 0.003186 0.003 0.002521 0.002613 0.0026 0.002594 0.001843 0.0019 0.000723 0.002365 0.001008 0.001611 0.001594 0.001214 0.001995 0.001711 0.001613 Phase 69.51336 106.1791 96.14425 -168.964 -166.65 164.3204 144.8339 139.3233 142.2024 140.5163 90.2394 135.5786 131.7732 117.8577 112.1715 97.05257 97.55393 86.87749 76.84304 73.4899 67.95007 58.91645 55.72765 50.50487 46.10271 32.01681 31.28349 23.96313 23.95399 21.81781 9.25092 6.732967 11.57442 -1.98556 -6.96747 -26.8448 -26.1216 -37.1835 -44.8451 -51.2692 -68.6103 -113.482 -54.8753 -44.7734 -52.8287 -35.8358 -48.97 -88.8673 -39.9805 -93.3539 dB -6.574 -8.193 -9.985 -12.057 -13.990 -15.729 -16.451 -17.081 -17.788 -18.374 -19.008 -19.563 -19.836 -19.982 -20.024 -20.198 -20.360 -20.315 -20.662 -20.825 -20.829 -21.054 -21.106 -20.546 -20.410 -19.834 -19.341 -18.686 -18.194 -17.410 -16.296 -15.680 -14.995 -14.282 -13.978 -13.704 -13.293 -13.456 -13.941 -14.304 -13.970 -12.407 -11.194 -10.503 -10.042 -9.805 -9.700 -9.677 -9.675 -9.797 S22 Mag 0.469123 0.389361 0.31676 0.249533 0.199762 0.163519 0.150471 0.139942 0.129002 0.120584 0.1121 0.105157 0.10191 0.100211 0.099719 0.097742 0.095938 0.09644 0.092666 0.090936 0.0909 0.088575 0.088044 0.093904 0.095388 0.101933 0.107879 0.116327 0.123119 0.134748 0.153171 0.164446 0.177937 0.193145 0.200034 0.206449 0.216445 0.21241 0.200884 0.192657 0.200223 0.239678 0.275602 0.298449 0.314688 0.323403 0.327323 0.32822 0.328278 0.323704 Phase 165.652 147.3224 128.8437 112.3379 98.40607 86.00244 80.85362 75.62067 70.78852 66.50803 63.06891 59.89891 57.89853 55.31375 52.913 48.15782 46.77354 43.96343 41.56831 39.68448 39.65156 37.36209 40.20195 40.9853 41.72367 43.50478 43.1206 42.91914 41.6739 41.67056 38.78395 35.35194 32.53478 27.05136 21.91237 17.35203 7.16786 -0.91524 -5.84805 -4.96141 -1.63464 -2.09342 -7.29699 -15.7192 -23.2788 -29.8824 -36.1307 -42.4137 -47.7329 -52.5319
Note: Data obtained from on-wafer measurements.
7
Biasing and Operation
The AMMC-6233 is normally biased with a positive supply connected to both VD1 and VD2 bond pads through the 100pF bypass capacitor as shown in Figure 19. The recommended supply voltage is 3 V. It is important to place the bypass capacitor as close to the die as possible. No negative gate bias voltage is needed for the AMMC6233. Input and output 50-ohm match are achieved on-chip; therefore no other external component is required at the input or output. In addition, the input and output are DC-blocked with internal coupling capacitors. No ground wires are needed because all ground connections are made with plated through-holes to the backside of the device. Refer the Absolute Maximum Ratings table for allowed DC and thermal conditions.
The location of the RF bond pads is shown in Figure 12. Note that all the RF input and output ports are in a Ground-Signal-Ground configuration. RF connections should be kept as short as reasonable to minimize performance degradation due to undesirable series inductance. A single bond wire is normally sufficient for signal connections, however double bonding with 0.7 mil gold wire or use of gold mesh[2] is recommended for best performance, especially near the high end of the frequency band. Thermosonic wedge bonding is preferred method for wire attachment to the bond pads. Gold mesh can be attached using a 2 mil round tracking tool and a tool force of approximately 22 grams and a ultrasonic power of roughly 55 dB for a duration of 76 8 mS. The guided wedge at an untrasonic power level of 64 dB can be used for 0.7 mil wire. The recommended wire bond stage temperature is 150 2C. Caution should be taken to not exceed the Absolute Maximum Rating for assembly temperature and time. The chip is 100um thick and should be handled with care. This MMIC has exposed air bridges on the top surface and should be handled by the edges or with a custom collet (do not pick up the die with a vacuum on die center). This MMIC is also static sensitive and ESD precautions should be taken. Notes: 1. Ablebond 84-1 LM1 silver epoxy is recommended. 2. Buckbee-Mears Corporation, St. Paul, MN, 800-2623824.
Assembly Techniques
The backside of the MMIC chip is RF ground. For microstrip applications the chip should be attached directly to the ground plane (e.g. circuit carrier or heatsink) using electrically conductive epoxy.[1] For best performance, the topside of the MMIC should be brought up to the same height as the circuit surrounding it. This can be accomplished by mounting a gold plate metal shim (same length and width as the MMIC) under the chip which is of correct thickness to make the chip and adjacent circuit the same height. The amount of epoxy used for the chip and/or shim attachment should be just enough to provide a thin fillet around the bottom perimeter of the chip or shim. The ground plan should be free of any residue that may jeopardize electrical or mechanical attachment.
VD1
VD2
OUT IN
Figure 17. AMMC-6233 simplified schematic
8
VD1 760 800 700 VD1 1070
VD2 1410
VD2
400 RFIN
RFI RFO
400 RFOUT
0 0 90 1810 1900
Figure 18. AMMC-6233 bonding pad locations
100 pF CAPACITOR
TO VDD DC SUPPLY
VD1
VD2
RF INPUT
AMMC-6233
RF OUTPUT
GOLD-PLATED SHIM (OPTIONAL)
Figure 19. AMMC-6233 assembly diagram
For product information and a complete list of distributors, please go to our website:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright (c) 2007 Avago Technologies Limited. All rights reserved. AV02-0312EN April 19, 2007


▲Up To Search▲   

 
Price & Availability of AMMC-6233

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X